Site icon Tous Pour Un

How to Solve Polynomials related Problems from CBSE Class 9 Maths Book

How to Solve Polynomials related Problems from CBSE Class 9 Maths Book

Mathematics, a subject not of everyone’s taste, some may find it interesting some may find it difficult and boring. However, there is no escaping from it as it is one of the compulsory subjects till 10th standard. So, here is an article that contains solutions that will guide you in solving problems without wasting your time in figuring how to solve.

Exercise 2.1

     i.        4x2–3x+7     ii.        y2+√2
   iii.        3√t+t√2    iv.        y+2/y
    v.        x10+y3+t50  

 

     i.        2+x2+x     ii.        2–x2+x3
    iii.            x2+x    iv.        √2x-1
     i.        5x3+4x2+7x     ii.        4–y2
   iii.        5t–√7    iv.        3
     i.        x2+x     ii.        x–x3    iii.        y+y2+4    iv.        1+x
    v.        3t    vi.        r2   vii.        7x3  

Solutions

Exercise 2.2

                     i.        x = 0                     ii.        x = – 1                    iii.        x = 2
             i.        p(y)=y2−y+1             ii.        p(t)=2+t+2t2−t3
           iii.        p(x)=x3            iv.        P(x) = (x−1)(x+1)
     i.  p(x)=3x+1, x=−1/3     ii.        p(x)=5x– Π, x = 4/5
   iii.  p(x)=x2−1, x=1, −1    iv.        p(x) = (x+1)(x–2), x =−1, 2
    v.  p(x) = x2, x = 0    vi.        p(x) = lx+m, x = −m/l
  vii.  p(x) = 3x2−1, x = -1/√3 , 2/√3 viii.        p(x) =2x+1, x = 1/2

Solutions

Exercise 2.3

i.             x+1 ii.            x−1/2
iii.           x iv.           x+Π
v.            5+2x  

Solutions

Exercise 2.4

i.             x3+x2+x+1 ii.            x4+x3+x2+x+1
iii.           x4+3x3+3x2+x+1 iv.           x3 – x2– (2+√2)x +√2
i.             p(x) = 2x3+x2–2x–1, g(x) = x+1
ii.            p(x)=x3+3x2+3x+1, g(x) = x+2
iii.           p(x)=x3–4x2+x+6, g(x) = x–3

Find the value of k, if x–1 is a factor of p(x) in each of the following cases:

i.             p(x) = x2+x+k ii.            p(x) = 2x2+kx+√2
iii.           p(x) = kx2–√2x+1 iv.           p(x)=kx2–3x+k
i.             12x2–7x+1 ii.            2x2+7x+3
iii.           6x2+5x-6 iv.           3x2–x–4

Factorize: 

i.             x3–2x2–x+2 ii.            x3–3x2–9x–5
iii.           x3+13x2+32x+20 iv.           2y3+y2–2y–1

Solutions

Exercise 2.5

i.             (x+4)(x +10) ii.            (x+8)(x –10)
iii.           (3x+4)(3x–5) iv.           (y2+3/2)(y2-3/2)
i.             103×107 ii.            95×96
iii.           104×96  
i.             9x2+6xy+y2 ii.            4y2−4y+1
iii.           x2–y2/100  
i.             (x+2y+4z)2 ii.            (2x−y+z)2
iii.           (−2x+3y+2z)2 iv.           (3a –7b–c)2
v.            (–2x+5y–3z)2 vi.           ((1/4)a-(1/2)b+1)2
i.             4x2+9y2+16z2+12xy–24yz–16xz
ii.            2x2+y2+8z2–2√2xy+4√2yz–8xz

 Write the following cubes in expanded form:

i.             (2x+1)3 ii.            (2a−3b)3
iii.           ((3/2)x+1)3 iv.           (x−(2/3)y)3

Evaluate the following using suitable identities: 

i.             (99)3 ii.            (102)3
iii.           (998)3  

Factorise each of the following:

i.             8a3+b3+12a2b+6ab2
ii.            8a3–b3–12a2b+6ab2
iii.           27–125a3–135a +225a2
iv.           64a3–27b3–144a2b+108ab2
v.            27p3–(1/216)−(9/2) p2+(1/4)p
i.             x3+y3 = (x+y)(x2–xy+y2)
ii.            x3–y3 = (x–y)(x2+xy+y2)
i.             27y3+125z3
ii.            64m3–343n3
i.             (−12)3+(7)3+(5)3
ii.            (28)3+(−15)3+(−13)3

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

  1. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
  1. Volume : 3x2–12x
  2. Volume : 12ky2+8ky–20k

Solutions

For more video solutions and micro concept, you can visit the best edu website that offers solutions to all most all the maths questions.

Exit mobile version